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Optical microscopy and multi-particle tracking are used to study hydrodynamic
interactions of monodisperse polymethylmethacrylate (PMMA) spheres at a decalin–
water interface. The short-time self-diffusion coefficient measured at low surface
coverage has the form DS

S (n) = αD0(1 − βn), where n is the area fraction occupied
by the particles, and D0 is the Stokes–Einstein diffusion coefficient in the bulk
suspension of PMMA spheres in decalin. The measured values of α are found to be
in good agreement with the numerical calculation for the drag coefficient of interfacial
particles. The measured values of β differ from that obtained for bulk suspensions,
indicating that hydrodynamic interactions between the particles have interesting new
features at the interface.

1. Introduction
The study of structures and dynamics of macromolecules and colloids at liquid–

liquid or liquid–air interfaces is of fundamental interest for our general understanding
of two-dimensional soft-matter systems; it also has immense practical applications
in catalysis, material synthesis, microfluidics and nanotechnology (Helmer 2005).
For example it is essential for optimizing the behaviour of solid-stabilized emulsion
(Binks 1998; Dinsmore et al. 2002). Moreover, the study of interfacial dynamics and
interactions is inherently connected to cell biology. Many biochemical reactions and
intracellular signalling that sustain life occur at interfaces. For example diffusive
transport of lipids and membrane-bound proteins plays an important role in many
aspects of cell biology (Sackmann 1996; Dahan et al. 2003). For these reasons,
the past decade has seen a growing interest in the use of the unique environment
of interfaces to explore fascinating science and new applications. A monolayer of
colloidal particles suspended at an oil–water (or water–air) interface has served as
a model system to study a range of important issues at soft interfaces. Examples
include two-dimensional ordering (Onada 1985), crystallization (Pieranski 1980) and
diffusion-limited aggregation (Hurd & Shaefer 1985), interactions between similarly
charged particles (Nikolaides et al. 2002; Chen et al. 2005) and dislocation boundaries

† Email address for correspondence: penger@ust.hk



244 Y. Peng, W. Chen, Th. M. Fischer, D. A. Weitz and P. Tong

of a colloidal crystal ball (Bausch et al. 2002; Lipowsky et al. 2005). These studies
have focused on the equilibrium properties of the interfacial particles.

Colloidal particles have also been used as tracer particles to study the rheological
properties of soft interfaces. For example Sickert and Rondelez (2003) measured
the Brownian diffusion coefficient of 0.4 μm diameter polystyrene beads immersed in
a monolayer of surfactant molecules at a water–air interface. Prasad, Koehler &
Weeks (2006) extended the single-particle method to two-particle microrheology
by measuring the relative diffusion between two micron-sized polystyrene beads
suspended at a protein-coated water–air interface. While these measurements revealed
interesting new features of tracer diffusion in macromolecular films, interpretation
of the experimental results is not straightforward (Fischer 2004; Sickert & Rondelez
2004; Sickert, Rondelez & Stone 2007). The measured diffusion coefficient is inversely
proportional to the drag coefficient felt by the interfacial particles. The theoretical
calculations, which connect the measured drag coefficient to the surface rheological
properties of interest, such as the surface shear viscosity ηs , consider idealized
situations, whereas the actual systems used in the experiment often reveal interesting
but unexpected deviations.

It is known that the drag coefficient of the interfacial particles is very sensitive
to the detailed geometry of the particles and the interface involved and also to
the boundary conditions at the interface. In considering the diffusion of proteins
and other membrane-bound particles in biological or artificial membranes, Saffman’s
model (Saffman & Delbrück 1975; Saffman 1976) and later extensions (Stone & Ajdari
1998) treat the tracer particle as a thin cylindrical disk with the same height as that
of the membrane (a thin viscous layer of viscosity ηs) overlaying a much thicker fluid
layer of viscosity η. The actual tracer particles used in the above experiments (Sickert
& Rondelez 2003; Prasad et al. 2006), however, are of the order of sub-micrometres
in diameter, which is more than 1000 times larger than the thickness of the surfactant
monolayer (or bilayer). When considering the motion of tracer spheres in a viscous
monolayer or membrane on one fluid, or between two infinitely thick viscous fluids,
two different boundary conditions at the interface were employed. Radoev, Nedjalkov
& Djakovich (1992) and Danov et al. (1995) assumed the interface to be free of
viscous stress (hence having constant surface pressure) and neglected the Marangoni
effect due to surfactant-density gradients at the interface. In recent calculations,
Fischer, Dhar & Heinig (2006) and Stone (Sickert, Rondelez & Stone, 2007) noted
that Marangoni forces are important even when the surfactant concentration at the
interface is low. They obtained analytical and numerical results for the viscous drag
of tracer spheres with the boundary condition that the interface be incompressible.

Compared to the large number of theoretical investigations, systematic experimental
studies of colloidal diffusion at interfaces are scarce. The lack of progress is partially
due to a lack of well-controlled two-dimensional colloidal systems for the experimental
studies. On the contrary, many model colloidal suspensions have been developed for
the study of colloidal dynamics in three dimensions (Pusey 1991). Early experiments
on colloidal diffusion at liquid–liquid (or liquid–air) interfaces (Radoev et al. 1992;
Sickert & Rondelez 2003) were carried out only for a few particles. Because of
the limited statistics, the measured diffusion coefficient suffered large experimental
uncertainties, making it difficult to quantitatively compare with the theoretical
predictions (Sickert & Rondelez 2003, 2004; Fischer 2004). The interactions and
dynamics of colloidal particles are known to be sensitive to weak forces (of order
pico- or femto-Newtons). This sensitivity is further magnified at interfaces. As a
result, the stability of interfacial particles becomes extremely sensitive to impurities
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at the interface (Fernández-Toledano et al. 2004). Accurate measurements of particle
motion require well-controlled procedures to thoroughly clean the interface and
colloidal samples, so that a well-dispersed monolayer of particles can be routinely
made at the interface. Unstable particles form colloidal aggregates or clusters at
the interface, making the measurement of individual particle motion inaccurate
or impossible if there are too many colloidal aggregates present in the sample.
In a recent experiment, Chen et al. (2006) developed the experimental procedures
necessary to produce such a monolayer of colloidal particles. With the well-controlled
two-dimensional colloidal systems, one can carry out precise measurements of the
particles’ diffusion coefficient at different interfaces. Such measurements are needed to
verify the theoretical calculations for interfacial diffusion at interfaces with (Dimova
et al. 2000; Fischer et al. 2006) and without (Radoev et al. 1992; Danov et al. 1995;
Fischer et al. 2006) a surfactant monolayer and at biological membranes (Saffman &
Delbrück 1975; Saffman 1976; Stone & Ajdari 1998). These theoretical calculations
used similar continuum equations of motion but made different assumptions about
the boundary conditions at the interface and between the tracer particles and the
interface.

In this paper, we report results of a systematic study of short-time self-diffusion of
monodisperse polymethylmethacrylate (PMMA) spheres at a decalin–water interface.
As will be shown later, this is an interesting colloidal system in which the
hydrodynamic interactions between the particles are three-dimensional, involving
both the interface and the upper and lower fluid phases. Because the colloidal system
is two-dimensional without influence of gravity and clearly visible without multiple
scattering, precise measurements of particle’s diffusion coefficient and pair correlation
function g(r) can be carried out conveniently using optical microscopy and particle-
tracking techniques. All these advantages make the two-dimensional monolayer of
PMMA particles a unique and ideal system to study the interfacial hydrodynamics
and rheology of soft interfaces. In the experiment, we measure the mean squared
displacement (MSD)

〈�r2(τ )〉 = (1/N)
∑

i

〈|r i(t + τ ) − r i(t)|2〉t (1.1)

of a diffusing particle as a function of lag time τ , where ri(t) is the position of the
i th particle at time t; N is the number of particles included in the calculation; and
the angle brackets 〈. . .〉t indicate an average over t.

The diffusion of interfacial particles is characterized by two distinct time regimes.
For low surface coverage and times much less than the time t0 = (2a)2/D0 for a particle
to diffuse over its own diameter d =2a, the particle’s motion is not hindered by direct
interactions with neighbouring particles, and only the hydrodynamic interactions with
the surrounding fluid are important. Here D0 = kBT /(6πηa) is the Stokes–Einstein
diffusion coefficient for a single particle with thermal energy kBT , fully immersed
in a liquid of viscosity η. At long times (τ � t0), however, the particle’s motion is
impeded by direct interactions with neighbouring particles, and thus the self-diffusion
is affected by both direct and hydrodynamic interactions. While the above arguments
were given originally for three-dimensional colloidal diffusion (Qiu et al. 1990; Van
Blaaderen et al. 1992; Segre, Behrend & Pusey 1995), we expect this is also true for
interfacial diffusion.

Previous work (Zahn, Mendez-Alcaraz & Maret 1997; Rinn et al. 1999; Kollmann
et al. 2002) reported the measurements of the long-time self-diffusion coefficient DL

S

for large paramagnetic latex spheres at a water-air interface. Because of long-range
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Sample d (μm) (±5%) D0 (μm2 s−1) α (±7%) β (±10%)

PMMA1 1.19 0.145 0.97 1.4 (1.2)
PMMA2 0.66 0.260 1.04 2.8

Table 1. Particle samples used in the experiment and the fitted values of α and β from the
measured short-time self-diffusion coefficient DS

S = αD0(1−βn). The numbers in the parentheses
are obtained from a second-order polynomial fit (see text).

direct interactions, the interpretation of the measurements is complicated by a
combination of structural and hydrodynamic effects. In this paper we focus on
new measurements of the short-time self-diffusion coefficient DS

S (n) as a function of
the area fraction, n= πa2ℵ/A, occupied by the interfacial particles. Here ℵ is the total
number of particles in the area A. The measured DS

S (n) is directly related to the drag
coefficient ξ of the tracer particles at the interface, and the results will be compared
with the numerically calculated ξ .

The remainder of the paper is organized as follows. We first describe the apparatus
and the experimental method in § 2. Diffusion measurements are presented in § 3, and
further discussions are given § 4. Finally, the work is summarized in § 5.

2. Experiment
The particles used in the experiment are PMMA spheres synthesized by Andrew

Schofield of University of Edinburgh (Schofield 2007). The PMMA spheres have
a poly(hydroxystearic acid) (PHSA) stabilizing layer ∼10 nm in thickness, which is
grafted to the particle surface to provide steric stabilization in non-polar solvents (Antl
et al. 1986). They have been widely used as a model hard-sphere system to study
the equilibrium and dynamic properties of bulk colloidal suspensions (Pusey 1991).
Two particle sizes are used in the experiment: one has diameter d = 2a = 1.19 μm
(PMMA1) and the other has d =0.66 μm (PMMA2). Both particles are uniform in
size distribution, with polydispersity less than 5%. They have a density of 1.19 g cm−13

and a refractive index of 1.49. The particles are thoroughly cleaned via multiple cycles
(typically 5 times) of centrifugation, removing impurities, and are resuspended in clean
decahydronaphthalene (decalin), used as received. The solvent decalin (a mixture of
cis and trans with density 0.89 g cm−13) was purchased from Acros Organics. Using a
falling ball viscometer (Gilmont Instruments), we measure the viscosity of the decalin
to be ηd = 2.5 cP at 22.5◦C. Dynamic light scattering (Berne & Pecora 1976) is used
to measure the diffusion coefficient D0 of the individual PMMA particles in a dilute
suspension in decalin. Using the Stokes–Einstein relationship D0 = kBT /(3πηdd) with
the measured decalin viscosity ηd , we also obtain the particle diameter d . Table 1
gives the measured values of d and D0 for the two particle samples.

The water–decalin interface is prepared using a sample cell shown in figure 1(a).
The sample cell is made of stainless steel (which is hydrophilic) with two concentric
and disk-shaped containers. The outer container has inner diameter 40 mm and height
4mm. The inner container has inner diameter 22 mm and height 1.6 mm. There are
four holes in the inner container, which are cylindrical in shape, with diameter 4–6 mm
and height 0.8 mm. These four holes serve as four independent sample cells for the
diffusion measurements to be discussed later. The bottom of each hole is sealed with
a 0.1 mm thick glass cover slip, which also serves as an optical window. Because
the density of water is larger than that of decalin, we first fill the holes to the top
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Figure 1. (a) Sample cell used to prepare a two-dimensional monolayer of colloidal particles
at the decalin-water interface. (b) A sketch showing a cross-sectional view of the decalin–water
interface: IF interface; U upper cover slip; D decalin; L lower cover slip; W water.

edge with fresh, deionized water of 18.2 MΩ · cm, and then add decalin to the top of
the water, filling the entire height of the inner container. Another cover slip is used
to cover the top of the inner container with the decalin–water interface sandwiched
between the top and bottom cover slips. Figure 1(b) shows a cross-sectional view of
the decalin–water interface made in this way. The diameter of each hole is chosen to
be not too small, so that the decalin–water interface can be kept flat visually. This
requirement ensures that all the interfacial particles in the view area are at the same
focal plane, and they do not have a downward drift velocity due to an inclination of
the interface. The diameter of each hole should also be not too large, so that the right
angle of the upper sharp edge of each hole can be used to pin the water surface and
reduce unwanted surface flow. Because of the non-slip boundary condition, the cover
slip on the top of the fluid layers helps greatly to stabilize the interface and further
reduce the interfacial flow.

Once the decalin–water interface is prepared (before the top cover slip is added to
seal the sample), a small amount of precleaned concentrated PMMA/decalin solution
is injected into the top decalin fluid layer. Because of density difference, the PMMA
particles settle on the interface under gravity and get trapped at the interface because
of capillary forces (Pieranski 1980). The coverage of PMMA particles at the interface
can be readily adjusted by varying the amount of injection of the concentrated
PMMA solution. In this way a well-dispersed two-dimensional monolayer of PMMA
spheres is formed at the interface with both the lower (water) and upper (decalin)
fluid layers of equal thickness (0.8 mm) sandwiched between the top and bottom cover
slips. Great care is taken to clean the sample cell and the decalin–water interface.
The stainless steel cell is cleaned in an ultrasonic bath and then washed with water
for 5 minutes. A Kimwipe (280 one-ply white wipers, Kimberly–Clark) soaked with
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acetone is used to further clean the cell, followed by repeat methanal and water rinses.
The cleaned cell is then filled with deionized water. The water surface is aspirated to
further remove residual impurities on the surface. The PMMA particles disperse well
at the clean decalin–water interface. Individual particles undergo vigorous Brownian
motion and remain stable at the interface for days.

The entire sample cell is placed on the sample stage of an inverted microscope
(Leica DM-IRB), and the motion of the interfacial particles is viewed from below
and recorded with a digital camera (CoolSnap-Pro, MediaCybernetics). Phase contrast
microscopy is used to obtain good images of the particles. The spatial resolution of
each image is set at 1392 × 1040 pixels, and each particle’s cross-section occupies
∼30 pixels in the image. The frame rate used in the experiment varies from
1 to 10 frames per second. Commercial software (ImagePro, MediaCybernetics)
with a spatial resolution of 60–100 nm is used to determine the particle positions.
The particle trajectories are then constructed from the consecutive images, using
homemade software, which is capable of tracking 70–80% of the particles in a typical
sequence of 100 images, each containing 100 particles. Some particles are lost during
the tracking because they move out of the view area. These lost particles will not affect
the accuracy of the diffusion measurements. Typically, we use 10 image sequences,
each containing 100 images, to calculate MSD, and the result is further averaged over
repeated runs (10–20 runs). This corresponds to an average over 1 000 000 particles,
ensuring that the statistical averaging is adequate.

Using the same image data, we also calculate the pair correlation function g(r)
(Behrens & Grier 2001; Chen et al. 2006) for each particle sample:

g(r) =
2N(r)

Aρ22πrdr − ρ
∑edge

i δAi(r)
, (2.1)

where N(r) is the number of particle pairs at separation r in each image; 2πrdr is
the bin area; ρ is the number density of the particles in the image; and A is the area
of the image. The last term in the denominator accounts for corrections due to the
edge effect, where δAi(r) is the missing bin area of the i th particle for large values of
r outside the image.

3. Experimental Results
3.1. PMMA1 spheres (d =1.19 μm)

Figure 2 shows an optical image of PMMA1 particles at the decalin–water interface.
Under phase contrast microscopy, the particles appear as clear circles with uniform
size distribution. These particles remain in focus under high magnification, indicating
that PMMA1 spheres are closely bound to the interface, and their vertical position
is determined by an energy minimum, much larger than kBT , which keeps them
at the interface (Pieranski 1980). Dinsmore et al. (2002) have shown, and we
have independently verified, the formation of colloidosomes by the self-assembly
of PMMA particles on the spherical interface of emulsion droplets of water in
decalin. Such formation of PMMA-particle-stabilized emulsions further demonstrates
that the PMMA spheres are bound to the interface by a large surface energy gain
but not by their own weight (gravitational energy). The characteristic surface energy
for the interfacial particles scales in the manner πa2γ (Pieranski 1980), which is
107kBT for a typical oil–water interface of interfacial tension γ ≈ 50 mN/m. The
surface energy remains 102kBT even when the particle’s contact area at the interface
is reduced to 10 nm2. This value is still very large compared with the gravitational
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10 μm

Figure 2. Equilibrium configuration of PMMA1 particles (d =1.19 μm) at the decalin–water
interface with area fraction n 
 0.08.

energy Δmga 
 0.4kBT for a PMMA1 sphere of radius a and buoyant mass Δm,
where g is the gravitational acceleration. Using confocal fluorescence microscopy,
Leunissen et al. (2007) showed that the PMMA particles sit very near the interface
on the decalin side but not in the interface, leading to a contact angle close to 180◦.

Figure 3(a) shows the measured pair correlation function g(r) of PMMA1 particles
at three area fractions. The measured g(r) is zero when the interparticle distance r is
smaller than the particle diameter d and approaches unity when r � 1.5d . For dilute
particle concentrations, g(r) is related to the interaction potential U (r) through the
Boltzmann factor g(r) = exp[−U (r)/kBT ]. The resulting U (r)/kBT at n= 0.015 is
shown in figure 3(b). To avoid the crowding effect at finite concentrations, we calculate
the many-body corrections to U (r), using the hypernetted chain and Percus–Yevick
approximations (Behrens & Grier 2001), and find that these corrections are negligible
at the area fraction n 
 0.015. It is seen from figure 3(b) that the interaction potential
for PMMA1 particles is close to that of hard spheres (dashed line) or hard disks for
two-dimensional systems (Chae, Ree & Ree 1969).

As shown in figure 3(a), because the interaction is short-ranged, the measured
g(r) hardly varies when the area fraction is changed from 0.015 to 0.048. When n

is increased to 0.28, the measured g(r) starts to oscillate with a dominant peak at
r 
 1.5d . The new length scale may reflect a small repulsive interaction between the
particles, which is also visible in figure 3(b). An accurate imaging with fine spatial
resolution is required to further resolve the amplitude and interaction range of such a
small repulsion. The spatial resolution of the imaging system used in the experiment
is limited, which cannot distinguish between two spheres with separation less than
r � 1.1d . The nearly hard–sphere-like interaction shown in figure 3 assures that
the short-time self-diffusion of PMMA1 particles is not be affected by their direct
interactions.

Figure 4 shows the measured MSD 〈�r2(τ )〉 as a function of delay time τ for
PMMA1 particles at two area fractions: n= 0.014 (circles) and n= 0.2 (triangles).
For the small-n sample, we find that the measured 〈�r2(τ )〉 is a linear function
of τ over the entire range of τ studied, indicating that the particles undergo free
diffusion with little influence of their direct interactions. For the large-n sample,
however, the measured 〈�r2(τ )〉 curves down slightly, as shown by the lower curve in
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Figure 3. (a) Measured pair correlation function g(r) of PMMA1 particles (d =1.19 μm)
at three area fractions: n= 0.015 (solid squares); n= 0.048 (open circles); n= 0.28 (open
triangles). (b) Normalized interaction potential U (r)/kBT (open squares) for PMMA1 particles
at n= 0.015. The dashed line indicates the idealized interaction potential of hard spheres.

figure 4. When n 
 0.2, the mean particle separation (centre to centre) takes the value

 = d[π/(4n)]1/2 
 2d , suggesting that on average a tracer particle will encounter a
neighbouring particle at a distance δ
 = 
−d 
 d . The corresponding diffusion time is
(δ
)2/D0 = t0 
 10 s, where t0 = d2/D0 is the time for a particle to diffuse over its own
diameter. Therefore, one expects that the Brownian motion of the interfacial particles
will be hindered when τ � 10 s. Indeed, from figure 4 we find that the measured
〈�r2(τ )〉 starts to deviate from the linear dependence on τ when τ � 10 s.

From the initial slope of the linear fits (solid lines shown in figure 4), we obtain
the short-time self-diffusion coefficient DS

S via the equation 〈�r2(τ )〉 = 4DS
Sτ . Figure 5

shows how the measured DS
S (n) changes with the area fraction n for PMMA1 particles

at the decalin–water interface. The measured DS
S decreases with n, indicating an

increased hindering in the particle’s motion at the interface. At low surface coverage
(n � 0.2), the measured DS

S can be fit to a linear function, DS
S (n) = αD0(1 − βn) (solid
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Figure 4. Measured mean squared displacement 〈�r2(τ )〉 as a function of delay time τ for
PMMA1 particles (d = 1.19 μm) at two area fractions: n= 0.014 (circles); n= 0.2 (triangles).
The solid lines show the linear fit to the data points (at small τ for the lower curve).

0 0.1 0.2

0.10

0.12

0.14

0.15

0.10

0.05

D
s s(

n)
 (
μ

m
2
 s–

1
)

D
s s(

n)
 (
μ

m
2
 s–

1
)

0 0.1 0.2 0.3 0.4
n

(b)

(a)

Figure 5. (a) Measured short-time self-diffusion coefficient DS
S (n) as a function of area fraction

n (n � 0.2) for PMMA1 particles (d = 1.19 μm) at the decalin–water interface. The solid line
is a linear fit, DS

S (n) = 0.14(1 − 1.4n) (μm2/s), to the data points. (b) Measured DS
S (n) vs n for

PMMA1 particles over a larger span of n (n � 0.45). The solid line shows the second-order
polynomial fit, DS

S (n) = 0.14(1 − 1.2n − 1.06n2) (μm2s−1), over the entire range of n. Error bars
indicate ±5% deviations from the mean value.
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Figure 6. Comparison of the measured pair correlation functions g(r) between PMMA2
particles (d = 0.66 μm, solid squares) and PMMA1 particles (d = 1.19 μm, open circles). The
measurements are made at the area fraction n= 0.01. Error bars indicate ±10% deviations
from the mean value.

line in figure 5a), with the fitted values of α and β given in table 1. The standard
deviations for α are typically 7%, and those for β are 10%. The experimental
uncertainties for α are mainly from statistical errors. The relatively large uncertainties
for β reflect the fact that the fitted value of β also varies somewhat with the range
of n chosen for the linear fit. The solid curve in figure 5(b) shows a second-order
polynomial fit to the data points over the entire range of n studied, which gives a
slightly smaller value of β . The values of α and β obtained from the second-order
polynomial fit are also given in table 1.

3.2. PMMA2 spheres (d =0.66 μm)

To further verify the measured values of α and β , we repeat the short-time self-
diffusion measurement for PMMA2 particles. Figure 6 compares the measured pair
correlation functions g(r) between PMMA2 particles (solid squares) and PMMA1
particles (open circles) at n= 0.01. The measured g(r) for PMMA2 particles shows
a similar nearly hard–sphere-like pair correlation function as PMMA1 particles do,
but their effective hard-sphere diameter is slightly larger than their physical size
d . The error bars in figure 6 indicate ±10% scatter, estimated from the individual
curves of the measured g(r). The measured g(r) for PMMA2 particles has relatively
large experimental uncertainties compared with that for PMMA1 particles. First,
PMMA2 particles have a smaller optical contrast due to their smaller size. Because
the refractive index difference between decalin and PMMA is very small, we cannot
track the PMMA particles under phase contrast (and bright field), when their diameter
becomes smaller than 0.5 μm. Second, experimental uncertainties in the separation
of two nearby particles, due to the overlap of their optical images, become severer
for smaller particles because of the relatively large interference effect. Finally, by
watching the motion of PMMA2 particles over a period of time, we find that while
most particles remain in focus for a long period of time, a small fraction of particles
( � 5%) move in and out of the focal plane. As a result, images of the individual
particles do not appear uniform, as shown in figure 7. This is in contrast with the
majority of PMMA1 particles that remain in focus and appear as clear circles with a
uniform size distribution as shown in figure 2.
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10 μm

Figure 7. Optical image of PMMA2 particles (d =0.66 μm) at the decalin–water interface
with area fraction n 
 0.02.

These observations indicate that the binding of PMMA2 spheres to the interface is
relatively weak compared with the binding of PMMA1 spheres. As mentioned earlier,
the particle’s adsorption energy to the interface scales in the manner πa2γ (Pieranski
1980), which is reduced by a factor of 3.2 for PMMA2 spheres. Weak repulsions are
also observed in bulk suspensions of PMMA particles dispersed in organic solvents,
such as a density- and reflective-index-matched mixture of cyclohexyl bromide (CHB)
and decalin (Royall, Leunissen & van Blaaderen 2003; Yethiraj & Van Blaaderen
2003). While the exact mechanisms responsible for the charging of the PMMA
spheres are not known at present, it has been proposed that the origin of the charge
is related to either the CHB solvent (Royall et al. 2003; Leunissen et al. 2007) or the
PHSA coating on the PMMA sphere when it is in contact with water (Auer, Poon &
Frenkel 2003; Schofield 2008). Apparently, the immiscible water phase acts as a ‘sink’
for counter-ions, which drastically increases the screening length in the oily solvent
(Leunissen et al. 2007). The separation of micro-ions (charged PMMA spheres) and
counter-ions on each side of the interface can produce anisotropic dipolar attractions
between the interfacial particles (Chen et al. 2005; Chen et al. 2006; Yethiraj & Van
Blaaderen 2003), which could be the cause for the occasional appearance of transient
particle strings visible in figures 2 and 7. It should be emphasized that because the
amount of charges on the PMMA spheres is small, the charge effects discussed earlier
are rather weak, and we have not studied them systematically in this experiment.
These complications in particle interaction only affect the measured g(r) near the
contact (and hence the corresponding high-concentration behaviour of the colloidal
samples) and have little effect on the short-time self-diffusion measurements in the
concentration range studied here.

Figure 8 shows the measured MSD 〈�r2(τ )〉 as a function of delay time τ for
PMMA2 particles at two area fractions: n=0.008 (circles) and n= 0.058 (triangles).
Because the diffusion time for a PMMA2 sphere to encounter a neighbouring particle
is larger than the range of delay time τ studied here, all the measured 〈�r2(τ )〉 show
a linear dependence on τ , indicating that PMMA2 spheres undergo free diffusion
with little influence of their direct interactions.

From the slope of the linear fits (solid lines shown in figure 8), we obtain the short-
time self-diffusion coefficient DS

S for PMMA2 particles. Figure 9 shows the measured
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Figure 8. Measured mean squared displacement 〈�r2(τ )〉 as a function of delay time τ for
PMMA2 particles (d =0.66 μm) at two area fractions: n= 0.008 (circles); n= 0.058 (triangles).
The solid lines show the linear fits to the data points.
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Figure 9. Measured short-time self-diffusion coefficient DS
S (n) as a function of area fraction

n for PMMA2 particles (d = 0.66 μm) at the decalin–water interface. The solid line is a linear
fit, DS

S (n) = 0.27(1 − 2.8n) (μm2s−1), to the data points. Error bars indicate ±5% deviations
from the mean value.

DS
S (n) as a function of area fraction n for PMMA2 particles at the decalin–water

interface. For the entire range of n studied here (n � 0.08), the measured DS
S can be

fit to a linear function, DS
S (n) = αD0(1 − βn), with the fitted values of α and β given

in table 1. Similar to the situation for PMMA1 particles, the standard deviations for
α are typically 7%, and those for β are 10%.

4. Discussion
Figures 5 and 9 reveal two novel features of interfacial hydrodynamics. First, at the

single-particle level, the measured DS
S for PMMA1 and PMMA2 particles at the n → 0

limit is directly related to the drag coefficient ξ via the equation DS
S (n= 0) = kBT /ξ .

For spherical particles fully immersed in a liquid of viscosity η, we have ξ =6πηa
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(Berne & Pecora 1976). For particles at a distance z from the interface, one finds
(Radoev et al. 1992; Fischer et al. 2006)

ξ = (η1a)f (z/a, B), (4.1)

where z is defined as the distance between the sphere’s north pole and the interface
(i.e. z = 0 when the sphere is in contact with the interface from below), and the
Boussinesq number B is defined as B = ηs/[(η1 + η2)a], where ηs is the shear viscosity
of the interface, and η1 and η2 are, respectively, the viscosities of the lower and upper
phase fluids forming the interface. The correction factor f (z/a, B) accounts for all the
effects of the interfacial hydrodynamics at the single-particle level and thus is a key
quantity for understanding the rheological properties of liquid–liquid interfaces. In a
recent calculation, Fischer et al. (2006) showed that f (z/a, B) = k(0) + k(1)B + o(B2),
where k(0) and k(1) are two coefficients which are determined solely by the normalized
distance z/a. At the z/a → ∞ limit, one obtains k(0) = 6π and k(1) = 0.

Using the same equations of motion and numerical procedures as described in Fisc-
her et al. (2006), we calculate f (z/a, B) for the decalin–water interface at 22.5◦C with
η1 
 0.96 cP , η2 = 2.5 cP , and thus η2 = 2.61η1. Figure 10(a) shows the numerically
calculated zeroth-order drag coefficient k(0) as a function of z/a for the decalin–water
interface (circles). In the plot, z/a = 0 indicates the tracer particle is in contact with
the interface from below (water side), and z/a = − 2 indicates the particle is in
contact with the interface from above (decalin side). For comparison, we also include,
in figure 10(a), the numerically calculated k(0) for symmetric membranes (η2 = η1,
triangles) and liquid–air interfaces (η2 = 0, diamonds), which have been obtained
previously (Fischer et al. 2006). Because of the difference in symmetry, the three
curves show different asymptotic behaviours. As the tracer particle moves upward
from the water side (low viscosity) to the decalin side (high viscosity), the calculated k(0)

increases smoothly from a value slightly larger than 6π (i.e. k(0) 
 1.58(6π) at z/a = 0)
to a value very close to 6π(η2/η1) (i.e. k(0) 
 0.974(6πη2/η1) 
 47.9 at z/a = − 2). The
solid line shows the function, k(0) = 29.49−14.95(z/a)−2.90(z/a)2, fitted to the circles.
The calculated k(0) for the symmetric membrane (triangles) does not change much
in the entire range of z/a, and its value at z/a = − 1 is slightly larger than that
when moving to either side. The calculated k(0) for the liquid–air interface (diamonds)
decreases continuously when the tracer particle moves upward towards the air side,
until it reaches its asymptotic value of zero when the particle is completely in air.

Figure 10(b) shows the numerically calculated first-order drag coefficient k(1) as
a function of z/a for the decalin–water interface (circles), symmetric membranes
(triangles) and liquid–air interfaces (diamonds). The calculated k(1) for the symmetric
membrane is maximal when the particle is symmetrically immersed in both phases
with its equator coinciding with the membrane plane. The calculated k(1) for the
decalin–water interface shows a similar behaviour but with its maximum position
shifted from the equatorial position (z/a = − 1) to the side of the less viscous phase
(water). The calculated k(1) for the liquid–air interface increases continuously when
the particle moves upward towards the air side.

We now compare the calculated drag coefficients with the measurements. Because
the decalin–water interface is thoroughly cleaned in the experiment, we expect the
Boussinesq number B to be small in our case. Therefore, the first-order correction
term, k(1)B , is negligible. From table 1 one finds that within the experimental
uncertainties, the measured DS

S (n= 0) at the interface for both PMMA samples
is equal to the Stokes–Einstein value D0 in decalin. This suggests that the measured
drag coefficient for both PMMA samples is ξ 
 6πη2a or k(0) 
 6π(η2/η1). Comparing
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Figure 10. (a) Numerically calculated zeroth-order drag coefficient k(0) as a function of
the normalized distance z/a for the decalin–water interface (η2 = 2.61η1, circles), symmetric
membranes (η2 = η1, triangles) and liquid–air interfaces (η2 = 0, diamonds). The solid line
shows the fitted function, k(0) = 29.49 − 14.95(z/a) − 2.90(z/a)2. (b) Numerically calculated
first-order drag coefficient k(1) as a function of z/a for the decalin–water interface (η2 = 2.61η1,
circles), symmetric membranes (η2 = η1, triangles) and liquid–air interfaces (η2 = 0, diamonds).

this result with figure 10(a), one immediately concludes that the vertical position of the
PMMA particles relative to the interface is at z/a 
 −2; i.e. the particles barely touch
the interface from the decalin side. In a separate experiment, Leunissen et al. (2007)
found that the PMMA particles do not wet the water phase, and their macroscopic
contact angle at the decalin–water interface is nearly 180◦. Our measurements together
with the numerical calculation shown in figure 10(a) confirm this contact angle.

It should be noted that the calculated k(0) shown in figure 10(a) is obtained with the
boundary condition that the interface be incompressible. This boundary condition is
fully justifiable for interfaces with a surfactant monolayer (Fischer et al. 2006; Sickert
et al. 2007) and for biological membranes (Saffman & Delbrück 1975; Saffman 1976;
Stone & Ajdari 1998). In this experiment, we did not add any surfactant at the
interface, and great care was taken to clean the interface and particle samples. The
fitted value of α (and β) for each particle sample was extrapolated from 15–25
independent measurements conducted at different times with separately prepared
decalin–water interfaces. Nevertheless, we do not have direct knowledge of whether
the interface is free of contaminations, nor do we have an independent means to
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quantify how clean the interface is. Levich (1962) has shown that on small length
scales, residual traces of surfactant are sufficient to create significant Marangoni
forces and render a free surface incompressible. Such extreme sensitivity to surface
contaminations was found in the study of the motion of air bubbles rising in a
viscous fluid (Bel Fdhila & Duineveld 1996; Wu & Gharib 2002). Our measurements
of interfacial diffusion together with the independent contact-angle measurement
appear to be consistent with the numerical calculation, assuming the decalin–water
interface is incompressible.

The second new feature shown in figures 5 and 9 is that the measured values
ofDS

S (n) for both PMMA1 and PMMA2 particles show an interesting concentration
dependence, which is directly related to the interfacial hydrodynamic interactions
(IHI) between the particles. The fitted values of β for the two PMMA samples
are not the same, with the larger particles having a smaller value of β . The
difference between the two fitted values of β is clearly beyond the experimental
uncertainties. In a separate experiment, Chen & Tong (2008) measured DS

S (n) for
three silica particle samples of different sizes at a water–air interface. They found
that the fitted values of β for the silica spheres also decrease with increasing
particle diameter d . These results suggest that the normalized short-time self-diffusion
coefficient DS

S/D0 at the interface depends on both n and d . The additional d

dependence of the measured DS
S/D0 appears to be a general feature of interfacial

diffusion.
For bulk (three-dimensional) colloidal suspensions, it was found that DS

S/D0 = 1 −
β3φ (Van Megan et al. 1987; Qiu et al. 1990), where φ is the volume fraction of
particles, and the coefficient β3 
 1.83 is independent of particle size d . The measured
value of β3 agrees well with the detailed calculation of two-body hydrodynamic
interactions in the bulk suspension (Qiu et al. 1990; Pusey 1991; Van Blaaderen
et al. 1992; Segre et al. 1995). One may have a simple estimate of β3 by examining
the concentration dependence of the effective viscosity ηeff = η(1 + β ′

3φ), of the
colloidal suspension, where η is the solvent viscosity. Assuming ξ 
 6πηeff a, one
immediately obtains DS

S/D0 ∝ (1 − β ′
3φ). Einstein showed that β ′

3 = 5/2 (Russel,
Saville & Schowalter 1989), which is slightly larger than the measured β3 
 1.83. This
is because ηeff refers to the bulk (macroscopic) viscosity of the suspension, which is
different from the local (microscopic) viscosity felt by a tracer particle in a bath of
many particles of the same size. The local viscosity felt by the tracer particle is less
than ηeff (Tong et al. 1997; Ye, Tong & Fetters 1998).

Compared with the bulk suspensions, hydrodynamic interactions between interfacial
particles are much less understood. At the moment we are not aware of any theoretical
calculation for β at interfaces. The motion of the colloidal monolayer is complicated
because it is a coupled system of the interface with the lower and upper fluid phases.
Although the contact area of the PMMA spheres at the interface is small, and
the particles feel approximately the same drag as in the bulk suspension (α 
 1),
the influence of the interface clearly shows up in the concentration dependence
of the measured DS

S . The extra d dependence of the measured β suggests that smaller
particles experience a larger resistance (dissipation) than larger particles. Such an
effect was also observed in a different colloidal monolayer system consisting of
weakly charged silica spheres at the water–air interface (Chen & Tong 2008) with a
contact angle of ∼ 600 (Tolnai 2003); i.e. approximately three fourths of the particle
(by diameter) is immersed in water. An intriguing question arises from the above
observations: what causes the d dependence of the measured β? Currently, there is
no analytical theory or numerical simulation available to explain the effect. From the
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experimental point of view, there are several candidates which may explain why large
and small particles feel different hydrodynamic interactions at the interface.

One possibility is that the large and small particles may have slightly different
wetting conditions at the interface. For example larger particles are bound more
strongly to the interface than smaller particles. In the experiment, we also found that
it gets increasingly difficulty to disperse small particles (<0.4 μm) at the interface.
Figure 6 shows that PMMA1 and PMMA2 particles experience slightly different
repulsive interactions. This slight short-range repulsion could increase the effective
area fraction n, making the value of the effective β smaller. This issue of interaction is
further complicated if one considers that the PMMA spheres are slightly charged and
that the counter-ions are distributed in the water phase near the contact point at the
interface. While these effects may be very small for the equilibrium properties, such
as the pair correlation function and the contact angle, of the colloidal monolayer,
the dynamic properties, such as the measured DS

S , of the monolayer could be more
sensitive to these small variations. As mentioned earlier, because the relevant surface
energy is large, a small change in contact area may result in a huge change in the
surface energy (and hence the dissipation), much larger than kBT .

Another possibility comes from the suspected surface contaminations mentioned
earlier. While we have tried the best we could to clean the interface, we do not have
direct knowledge of whether our cleaning is perfect. At the single-particle level, surface
contaminations are taken care of with the boundary condition that the interface be
incompressible. At the two-particle level, non-perfect cleaning may give rise to a
non-zero Boussinesq number B , providing another channel for viscous dissipation
(or drag). Similar to a surfactant monolayer, a monolayer of colloidal particles can
also produce an effective shear viscosity, ηc, at the interface and hence give rise to
an effective Boussinesq number Beff = ηc/[(η1 + η2)a]. The value of Beff is expected to
increase linearly with the particle area fraction n for small values of n (Beff 
 β2n),
and thus the drag coefficient ξ shown in 4.1 takes the form ξ 
 η1a(k(0) +k(1)β2n). This
renormalized form of ξ (n) can explain the n dependence of the measured DS

S (n) =
kBT /ξ (n). Complicated geometry effects, such as those discussed earlier and the
particle size dependence of the measured β , are presumably contained in the two
proportionality constants k(1) and β2. Clearly, a detailed calculation of two-body
hydrodynamic interactions at the interface is needed in order to fully understand the
concentration dependence of the measured DS

S (n).

5. Conclusion
We have carried out a systematic study of short-time self-diffusion of monodisperse

polymethylmethacrylate (PMMA) spheres at a decalin–water interface. This is a
model two-dimensional system, in which the PMMA particles interact nearly like hard
spheres. Two particle sizes are used in the experiment: one has diameter d = 1.19 μm,
and the other has d =0.66 μm. An important objective of the paper is to delineate
the experimental conditions and procedures, including cleaning of the interface and
purification of the colloidal samples, under which one can obtain accurate and reliable
data for the short-time self-diffusion coefficient DS

S . Optical microscopy and multi-
particle tracking are used to measure DS

S (n) as a function of the area fraction n

occupied by the interfacial particles. It is found that the measured DS
S at low surface

coverage has the form DS
S (n) = αD0(1−βn), where D0 is the Stokes–Einstein diffusion

coefficient for the bulk suspension of PMMA spheres in decalin. The measured values
of α for both PMMA samples are close to unity. The measured values of β for the
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two PMMA samples are not the same with the larger particles having a smaller value
of β (see table 1).

The measured DS
S (n) in the dilute limit (n → 0) is directly related to the single-

particle drag coefficient ξ at the interface. Using the equation DS
S (n = 0) = kBT /ξ and

the measured value of α 
 1, we find ξ 
 6πη2a, where η2 is the viscosity of decalin.
This result together with the early confocal microscope observations (Leunissen
et al. 2007) that the PMMA particles sit very near the interface on the decalin side
confirm the numerical calculation of the zeroth-order drag coefficient k(0) shown in
figure 10(a). The measured single-particle self-diffusion at the interface together with
the calculated drag coefficient thus provide an accurate method to determine the
contact angle of colloidal particles at the interface. The concentration dependence of
the measured DS

S (n) is caused by hydrodynamic interactions between the particles at
the interface. The measured particle-size dependence of the linear coefficient β is a
new feature of interfacial diffusion, which is absent from three-dimensional diffusion
in bulk suspensions. Currently, there is no analytical theory or numerical simulation
available to explain the origin of the measured particle-size dependence of β . Several
scenarios are discussed from the experimental point of view in § 4, but a more
quantitative understanding about the concentration dependence of DS

S (n) requires a
detailed calculation of two-body hydrodynamic interactions at the interface.
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